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2

D(a, b) = Xa1Zb1 ⊗ Xa2Zb2 ⊗ … ⊗ XanZbn

WH2n = {iκD(a, b) | a, b ∈ 𝔽n
2, κ ∈ ℤ4}

• Symplectic Inner Product

D(a, b)D(a′ , b′ ) = D(a′ , b′ )D(a, b) ↔
a′ bT + b′ aT = 0 mod 2

[a b] [0 𝕀n

𝕀n 0 ] [(a′ )T

(b′ )T]
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Cliff2n = {g ∈ 𝕌2n |gD(a, b)g† ∈ WH2n, ∀D(a, b) ∈ WH2n}
• It turns out that

gD(a, b)g† = ± D([a, b]Fg) where Fg is a 2n × 2n binary matrix

• These so-called “Symplectic Matrices”  must obeyFg

Fg [0 𝕀n

𝕀n 0] FT
g = [0 𝕀n

𝕀n 0] ∀g ∈ Cliff2n

• Overall

Cliff2n/WH2n ≂ Sp(2n, 𝔽2) = ⟨
1 0 0 0
1 1 0 0
0 0 1 1
0 0 0 1

, [0 1
1 0] [1 1

0 1]⟩
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• Describe an n-qubit stabilizer state by its n stabilizer generators

|ψ⟩ ↔
{sj ∈ WH2n sj |ψ⟩ = |ψ⟩, 1 ≤ j ≤ 2n}
{genj = [a b]j ∈ 𝔽2n

2 1 ≤ j ≤ n}
• Updating this state after a Clifford Unitary  is also easyg

[a b] ↦ [a b] Fg

• Leads to the Gottesman-Knill Theorem

Stabilizer circuits (Cliffords + Pauli Mmts) on stabilizer input are 
efficiently/  simulable on a classical computerpoly(n)
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T

F

• Notation had not yet converged

• Routines for 

|F⟩⟨ F | =
1
2 (𝕀2 +

X + Y + Z

3 )
|T⟩⟨ T | =

1
2 (𝕀2 +

X + Y

2 )
• Looked at


1. Error Suppression


2. Threshold Error rates
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Threshold Error Rates for MSD
• Mainly of foundational interest, because if both

1. All states inside stabilizer polytope plus perfect Cliffords/mmts 
are efficiently simulable (which is always true) 

2. Any state outside stabilizer polytope plus perfect Cliffords/mmt 
enable universal QC

Then would have a nice computational model with sharp threshold 
between classical and quantum power.

• Open Questions after Bravyi & Kitaev:

A.  an MSD scheme distilling all states outside octahedron?∃

B. Geometry of useful/useless region for operations and thresholds?

C. Geometry of useful/useless region for qudit states/operations and 
thresholds (i.e. which are most robust to noise  Magic Measure)∼



Threshold Error Rates for MSD



Threshold Error Rates for MSD
• Reichardt: Tight in  direction|T⟩



Threshold Error Rates for MSD
• Reichardt: Tight in  direction|T⟩

T

F



Threshold Error Rates for MSD
• Reichardt: Tight in  direction|T⟩

• Campbell+Browne: Undistillable region in 
direction probably unavoidable

T

F



Threshold Error Rates for MSD
• Reichardt: Tight in  direction|T⟩

• Campbell+Browne: Undistillable region in 
direction probably unavoidable

• H+van Dam: All mixtures of unitaries outside 
Clifford polytope lead to Universality

T

F



Threshold Error Rates for MSD
• Reichardt: Tight in  direction|T⟩

• Campbell+Browne: Undistillable region in 
direction probably unavoidable

• H+van Dam: All mixtures of unitaries outside 
Clifford polytope lead to Universality

• Most noise-robust unitary is T
T

F



Threshold Error Rates for MSD
• Reichardt: Tight in  direction|T⟩

• Campbell+Browne: Undistillable region in 
direction probably unavoidable

• H+van Dam: All mixtures of unitaries outside 
Clifford polytope lead to Universality

• Most noise-robust unitary is T

• Qudits:  generalizes to  ( )T M |T⟩ ↦ M | + ⟩

T

F



Threshold Error Rates for MSD
• Reichardt: Tight in  direction|T⟩

• Campbell+Browne: Undistillable region in 
direction probably unavoidable

• H+van Dam: All mixtures of unitaries outside 
Clifford polytope lead to Universality

• Most noise-robust unitary is T

• Qudits:  generalizes to  ( )T M |T⟩ ↦ M | + ⟩

T

F



Threshold Error Rates for MSD
• Reichardt: Tight in  direction|T⟩

• Campbell+Browne: Undistillable region in 
direction probably unavoidable

• H+van Dam: All mixtures of unitaries outside 
Clifford polytope lead to Universality

• Most noise-robust unitary is T

• Qudits:  generalizes to  ( )T M |T⟩ ↦ M | + ⟩

T

F

• Noise-robust state (analogue of ) is |F⟩
( |1⟩ − |p − 1⟩)/ 2



Threshold Error Rates for MSD
• Reichardt: Tight in  direction|T⟩

• Campbell+Browne: Undistillable region in 
direction probably unavoidable

• H+van Dam: All mixtures of unitaries outside 
Clifford polytope lead to Universality

• Most noise-robust unitary is T

• Qudits:  generalizes to  ( )T M |T⟩ ↦ M | + ⟩

T

F

• Noise-robust state (analogue of ) is |F⟩
( |1⟩ − |p − 1⟩)/ 2

• Most noise-robust unitary seems to be M
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Brief Detour on Qudits
• Veitch et al.: It turns out the 

relevant object for odd 
dimensions is not the 
stabilizer polytope (red) but 
the Wigner polytope (hatched)

•  often 
called Strange states 


• Most negative, furthest 
outside Wigner polytope

( |1⟩ − |d − 1⟩)/ 2
|𝕊⟩
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What is special about the negative states?
• States with negativity are the 

ones that can boost a 
Clifford computer to UQC

• H et al.: They are also 
exactly the states that can 
display contextuality in an 
experiment with stabilizer 
measurements on qudits

• Two notions of non-
classicality coincide


A. Computational 

B. Foundational

• Extended in several ways by 
Raussendorf and co-authors

Noncontextuality Inequality

• Analagous results to qubits 
regarding (non-)tight 
distillation in Face/Edge dirns
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Robustness of Magic

• Straightforward using e.g. CVX or similar


• Problem size grows rapidly in qubits: {6,60,1080,36720,2423520,…}
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∑
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• Stabilizer rank is the minimum  such that above holds ( )r ⇝ | |x | |0

• An approximate version of stabilizer rank is also useful for weak sim

• Approx Stab Rank is closely related to another Magic Monotone

• Extent:

ξ( |ψ⟩) = min
||x||1: |ψ⟩=∑r

j=1 xj|sj⟩
| |x | |2

1

• Morally similar to  calculation for Robustness, except rows of 
 are now stabilizer kets. Optimisation is a SOCP.

Ax = b
A



Low Rank Stabilizer Decompositions



Low Rank Stabilizer Decompositions



Low Rank Stabilizer Decompositions



Low Rank Stabilizer Decompositions

• Can decompose diagonal non-Cliffords into Cliffords


• E.g. Every time we encounter a CCZ, roll a D8


• Close to true w.h.p if choose  paths( | |x | |1 /δ)2



Low Rank Stabilizer Decompositions

• Can decompose diagonal non-Cliffords into Cliffords


• E.g. Every time we encounter a CCZ, roll a D8


• Close to true w.h.p if choose  paths( | |x | |1 /δ)2



Stabilizer Nullity



Stabilizer Nullity
• One downside of Robustness and Extent is that they characterise



Stabilizer Nullity
• One downside of Robustness and Extent is that they characterise

|ψ⟩ = 1

2
|0⟩ + eiπ/100 |1⟩ as having ℛ( |ψ⟩), ξ( |ψ⟩) ≈ 1



Stabilizer Nullity
• One downside of Robustness and Extent is that they characterise

|ψ⟩ = 1

2
|0⟩ + eiπ/100 |1⟩ as having ℛ( |ψ⟩), ξ( |ψ⟩) ≈ 1

• A different monotone is better at capturing the non-stabilizerness



Stabilizer Nullity
• One downside of Robustness and Extent is that they characterise

|ψ⟩ = 1

2
|0⟩ + eiπ/100 |1⟩ as having ℛ( |ψ⟩), ξ( |ψ⟩) ≈ 1

• A different monotone is better at capturing the non-stabilizerness

• -qubit stabilizer state  has  independent commuting Pauli n |ψ⟩ n P



Stabilizer Nullity
• One downside of Robustness and Extent is that they characterise

|ψ⟩ = 1

2
|0⟩ + eiπ/100 |1⟩ as having ℛ( |ψ⟩), ξ( |ψ⟩) ≈ 1

• A different monotone is better at capturing the non-stabilizerness

• -qubit stabilizer state  has  independent commuting Pauli n |ψ⟩ n P

P |ψ⟩ = |ψ⟩



Stabilizer Nullity
• One downside of Robustness and Extent is that they characterise

|ψ⟩ = 1

2
|0⟩ + eiπ/100 |1⟩ as having ℛ( |ψ⟩), ξ( |ψ⟩) ≈ 1

• A different monotone is better at capturing the non-stabilizerness

• -qubit stabilizer state  has  independent commuting Pauli n |ψ⟩ n P

P |ψ⟩ = |ψ⟩

• Stabilizer nullity  of generic pure state measures how far from thisν



Stabilizer Nullity
• One downside of Robustness and Extent is that they characterise

|ψ⟩ = 1

2
|0⟩ + eiπ/100 |1⟩ as having ℛ( |ψ⟩), ξ( |ψ⟩) ≈ 1

• A different monotone is better at capturing the non-stabilizerness

• -qubit stabilizer state  has  independent commuting Pauli n |ψ⟩ n P

P |ψ⟩ = |ψ⟩

• Stabilizer nullity  of generic pure state measures how far from thisν

ν( |ψ⟩) = n − log2 {P : P |ψ⟩ = |ψ⟩}



Stabilizer Nullity
• One downside of Robustness and Extent is that they characterise

|ψ⟩ = 1

2
|0⟩ + eiπ/100 |1⟩ as having ℛ( |ψ⟩), ξ( |ψ⟩) ≈ 1

• A different monotone is better at capturing the non-stabilizerness

• -qubit stabilizer state  has  independent commuting Pauli n |ψ⟩ n P

P |ψ⟩ = |ψ⟩

• Stabilizer nullity  of generic pure state measures how far from thisν

ν( |ψ⟩) = n − log2 {P : P |ψ⟩ = |ψ⟩}

• Another useful feature not present in  is that  is additiveℛ, ξ ν



Stabilizer Nullity
• One downside of Robustness and Extent is that they characterise

|ψ⟩ = 1

2
|0⟩ + eiπ/100 |1⟩ as having ℛ( |ψ⟩), ξ( |ψ⟩) ≈ 1

• A different monotone is better at capturing the non-stabilizerness

• -qubit stabilizer state  has  independent commuting Pauli n |ψ⟩ n P

P |ψ⟩ = |ψ⟩

• Stabilizer nullity  of generic pure state measures how far from thisν

ν( |ψ⟩) = n − log2 {P : P |ψ⟩ = |ψ⟩}

• Another useful feature not present in  is that  is additiveℛ, ξ ν

ν( |ψ⟩ ⊗ |ϕ⟩) = ν( |ψ⟩) + ν( |ϕ⟩)
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• Limits of Magic State Distillation routines? ( )


• Magic Redistribution: State/Circuit Synthesis


• CCZ (equivalent to Toffoli): Supercomputer proof 7  gates needed 





• Ancilla-assisted synthesis is powerful, practical but hard to prove

10−3 ≤ ϵ ≤ 10−20

T
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Application of Monotones to Synthesis
• Also works for the ancilla-assisted case 





• Calculate and find: 


• Meaning: impossible to compile  with fewer than 4  gates


• The above construction is -optimal

ℛ( |T⟩⊗3) < ℛ( |CCZ⟩) ≲ ℛ( |T⟩⊗4)

CCZ T

T
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Not Covered:

• Many more results on monotones like SRE by others

• ZX-calculus applied to e.g. Stabilizer Rank simulators

• The  polytope and simulation schemes based thereonΛ

• Applications in Real Physics™
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